Vascular wall–produced prostaglandin E2 exacerbates arterial thrombosis and atherothrombosis through platelet EP3 receptors

نویسندگان

  • Sabrina Gross
  • Peggy Tilly
  • Didier Hentsch
  • Jean-Luc Vonesch
  • Jean-Etienne Fabre
چکیده

Prostanoids, bioactive lipids derived from arachidonic acid (AA), are important for vascular homeostasis. Among them, prostaglandin E2 (PGE2) enhances aggregation of platelets submaximally stimulated in vitro. This results from activation of EP3, one of the four PGE2 receptors, which decreases the threshold at which agonists activate platelets to aggregate. Although PGE2 altered venous thrombosis induced by administration of AA, its role in pathophysiopathological conditions has remained speculative. We report that arterial walls subjected to inflammatory stimuli produce PGE2. In several models, we show that PGE2 produced by the arterial wall facilitates arterial thrombosis. Next, we detected PGE2 in mouse atherosclerotic plaques. We demonstrate that this plaque-produced PGE2 is not altered and is still able to activate EP3. In addition, we present evidence that PGE2 can leave the plaque and activate EP3 on blood platelets. Consistent with these findings, we observed that atherothrombosis induced in vivo by mechanical rupture of the plaque was drastically decreased when platelets lacked EP3. In conclusion, PGE2 facilitates the initiation of arterial thrombosis and, hence, contributes to atherothrombosis. Inhibition of the platelet EP3 receptor should improve prevention of atherothrombosis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A biological target for antiplatelet therapy: the prostaglandin E2 receptor EP4

Background Acute myocardial infarction is one of the leading causes of death in the world which is caused by coronary artery thrombosis. Platelets play a central role in cardiovascular thrombosis. Platelet aggregation caused due to a ruptured artherosclerotic plaque could eventually lead to vascular occlusion. Another important component of vascular diseases is inflammation. During inflammation...

متن کامل

Blocking the EP3 receptor for PGE2 with DG-041 decreases thrombosis without impairing haemostatic competence.

AIMS Haemostasis interrupts bleeding from disrupted blood vessels by activating platelet aggregation and coagulation. A similar mechanism termed thrombosis generates obstructive thrombi inside diseased arteries. As a consequence of this similarity, current anti-thrombotic agents increase the risk of bleeding. Atherosclerotic plaques produce significant amounts of prostaglandin E2 (PGE2), which ...

متن کامل

The prostaglandin E2 receptor EP4 is expressed by human platelets and potently inhibits platelet aggregation and thrombus formation.

OBJECTIVE Low concentrations of prostaglandin (PG) E(2) enhance platelet aggregation, whereas high concentrations inhibit it. The effects of PGE(2) are mediated through 4 G protein-coupled receptors, termed E-type prostaglindin (EP) receptor EP1, EP2, EP3, and EP4. The platelet-stimulating effect of PGE(2) has been suggested to involve EP3 receptors. Here we analyzed the receptor usage relating...

متن کامل

Original Research: Focus on Platelets The Prostaglandin E2 Receptor EP4 Is Expressed by Human Platelets and Potently Inhibits Platelet Aggregation and Thrombus Formation*

Objective—Low concentrations of prostaglandin (PG) E2 enhance platelet aggregation, whereas high concentrations inhibit it. The effects of PGE2 are mediated through 4 G protein-coupled receptors, termed E-type prostaglindin (EP) receptor EP1, EP2, EP3, and EP4. The platelet-stimulating effect of PGE2 has been suggested to involve EP3 receptors. Here we analyzed the receptor usage relating to th...

متن کامل

Neuronal prostaglandin E2 receptor subtype EP3 mediates antinociception during inflammation.

The pain mediator prostaglandin E2 (PGE2) sensitizes nociceptive pathways through EP2 and EP4 receptors, which are coupled to Gs proteins and increase cAMP. However, PGE2 also activates EP3 receptors, and the major signaling pathway of the EP3 receptor splice variants uses inhibition of cAMP synthesis via Gi proteins. This opposite effect raises the intriguing question of whether the Gi-protein...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • The Journal of Experimental Medicine

دوره 204  شماره 

صفحات  -

تاریخ انتشار 2007